Maejo Information Technology and Innovation Journal (MITIJ)
 Search | First Page   
 
 
 
» Home
» Current Issue
» Archives
» Journal Search/Article
» Register (OJS/PKP)
 

                               :: Article details ::
Return to search menu 
Article name
The Study of Tesseract OCR Performance for Image Processing in Financial Transaction Verification
Article type
Research article
Authors Narongkiad Namhuaithong(1), Traiphakh Sitthieaw(1), Attawit Changkamanon(1), Somnuek Sinthupuan(1) and Kongkarn Dullayachai(1*)
Office Computer Science Department, Faculty of Science, Maejo University (1) *Corresponding author: kongkarn@gmaejo.mju.ac.th
Journal name Vol. 11 No.2 (2025): May - August
Abstract

         This research aims to enhance Tesseract OCR efficiency for financial transaction verification by examining five image preprocessor codenames: Image Preprocessor Alpha (IPPA), Image Preprocessor 2 or IPP2, IPP6, IPP7, and IPP12. (Disintegration, n.d.) The study employed a two-phase methodology: accuracy testing on 116 bank transfer receipts and performance evaluation using datasets of 250 to 1,500 transactions. The findings revealed IPP12 (incorporating Grayscale, Resize, Contrast, and Sauvola Threshold) as the optimal preprocessing approach. The Sauvola Threshold method effectively consolidated preprocessing techniques into a single, accurate method. Accuracy metrics using Confusion Matrix demonstrated impressive results: Accuracy (81.03%), Precision (82.14%), Recall (90.79%), and F1-Score (86.26%), indicating balanced performance in reducing false positives and maintaining comprehensive receipt detection. Performance testing using GO programming language benchmarking tools showed the system achieved an average processing time of 5.313 seconds, utilizing 0.277 GB memory and 5.47M allocated space. The research highlights the significance of strategic image processing technique selection in improving OCR performance for financial document verification.

Keywords Tesseract OCR; Image Processing;Sauvola Threshold; Financial Transaction Verification; Character Recognition Accuracy
Page number 156-171
ISSN ISSN 3027-7280 (Online)
DOI
ORCID_ID 0009-0005-2802-2871
Article file https://mitij.mju.ac.th/ARTICLE/R68018.pdf
  
Reference 
  Bloomberg, D. (n.d.). Leptonica: An open source C library for image processing and analysis. http://leptonica.org/
  Disintegration. (n.d.). Imaging: Image processing package for Go. https://pkg.go.dev/github.com/disintegration/imaging
  Google. (n.d.). Tesseract OCR. https://github.com/tesseract-ocr/tesseract
  Lokhande, S. S., & Dawande, N. A. (2015). A survey on document image binarization techniques. In 2015 International Conference on Computing Communication Control and Automation (pp. 742-746). IEEE. https://doi.org/10.1109/ICCUBEA.2015.148
  Lu, M., & Yang, Y. (2024). Image processing applications in smart contracts: Automated financial transaction verification. Technical Sciences, 41(4), 22. http://dx.doi.org/10.18280/ts.410422
  Lu, S., Su, B., & Tan, C. L. (2010). Document image binarization using background estimation and stroke edges. International Journal on Document Analysis and Recognition, 13(4), 303-314. http://dx.doi.org/10.1007/s10032-010-0130-8
  Mursari, L. R., & Wibowo, A. (2021). The effectiveness of image preprocessing on digital handwritten scripts recognition with the implementation of OCR Tesseract. Communications in Computer and Information Science, 10(3). https://doi.org/10.18495/comengapp.v10i3.386
  Sauvola, J., & Pietik?inen, M. (2000). Adaptive document image binarization. Pattern Recognition, 33(2), 225-236. https://doi.org/10.1016/S0031-3203(99)00055-2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Return to search menu
       
Editorial Board of Maejo Information Technology and Innovation Journal MAEJO UNIVERSITY
No. 63 Moo 4, Nong Han Subdistrict, San Sai District, Chiang Mai Province 50290  mitij@mju.ac.th