|
|
Article name |
Flood Area Prediction in Urban Watershed of Chiang Mai Province Using Remote Sensing and Regression Learning
|
|
|
Article type |
Research article
|
Authors |
Phetcharat Parathai(1), Naruephorn Tengtrairat(1*) and Wai Lok Woo (2)
|
Office |
Department of Computer and Information Sciences, Northumbrai University, Newcastle Upon Tyne, United Kingdom(2) (School of Software Engineering, Faculty of Business Administration, Payap University, Chiang Mai, Thailand(1), Department of Computer and Information Sciences, Northumbrai University, Newcastle Upon Tyne, United Kingdom(2) *Corresponding author: naruephorn_t@payap.ac.th
|
Journal name |
Vol. 11 No.2 (2025): May -
August
|
Abstract |
The current state of global warming has led to more frequent and severe flooding. Accurate flood warnings in advance can help mitigate damage to lives and property. This research presents a modeling approach for predicting flood-prone areas using satellite imagery data extraction. The study focuses on urban areas in Chiang Mai Province, covering a total area of 902.025 square meters. Six key factors influencing flood prediction are considered: water balance, evapotranspiration, land cover, rainfall, NDVI, and flood extent. These factors are derived from satellite images captured by Sentinel, MODIS, and Landsat satellites via Google Earth Engine. Satellite imagery provides extensive and continuous spatial coverage, while radar satellite (SAR) data remains operational even in cloudy weather or at night, reducing the cost and time required for field surveys. The flood prediction models were developed using seven regression methods: LR, SVR, Decision Tree, Random Forest, Gradient Boosting, XGBoost, and LightGBM. These methods were selected for their high efficiency and computational speed, making them suitable for large datasets without requiring high processing power. The Random Forest method demonstrated the highest accuracy in flood area prediction, with lower RMSE and higher R-squared values compared to XGBoost, LightGBM, Decision Tree, Gradient Boosting, SVR, and LR, with average improvements of 3%, 12%, 19%, 31%, 51%, and 65%, respectively. This research holds significant potential for practical application, particularly through the development of an early warning system for flood hazards at the local level. Such a system would be especially beneficial in urban areas with high population density, enhancing the efficiency and timeliness of emergency response planning and evacuation efforts by relevant agencies in a systematic and coordinated manner.
|
Keywords |
remote sensing; flood prediction; regression; machine learning; satellite imagery
|
Page number |
188-210
|
ISSN |
ISSN 3027-7280 (Online)
|
DOI |
|
ORCID_ID |
0000-0002-4712-9923
|
Article file |
https://mitij.mju.ac.th/ARTICLE/R68019D.pdf
|
| |
Reference | |
|
กรมป้องกันและบรรเทาสาธารณภัย. (2567). รายงานสถานการณ์สาธารณภัย. ค้นเมื่อ [14 เมษายน 2568], ค้นจาก https://backofficeminisite.disaster.go.th/apiv1/apps/minisite_directing/194/content/8728/download?filename=26c236095f0e9fc4a4e0af7edf6fa9f0.pdf
|
|
กรุงเทพธุรกิจ. (2565, 4 ตุลาคม). อัปเดต "น้ำท่วมเชียงใหม่" ล่าสุด! เช็กจุดน้ำท่วมขัง-ปิดการจราจร. ค้นเมื่อ [16 เมษายน 2568], ค้นจาก https://www.bangkokbiznews.com/news/news-update/1030426
|
|
ศูนย์วิชาการสนับสนุนการบริหารจัดการน้ำ มหาวิทยาลัยเชียงใหม่. (2567). แผนที่เสี่ยงภัยน้ำท่วม (Flood Hazard Map). ค้นเมื่อ [16 เมษายน 2568], ค้นจาก https://watercenter.scmc.cmu.ac.th/cmflood/floodmap
|
|
Chitwatkulsiri, D., & Miyamoto, H. (2023). Real-Time Urban Flood Forecasting Systems for Southeast Asia—A Review of Present Modelling and Its Future Prospects. Water, 15(1), 178. https://doi.org/10.3390/w15010178
|
|
European Space Agency. (n.d.). Sentinel-2 Level-2A products. ค้นเมื่อ [19 พฤศจิกายน2567], ค้นจากhttps://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2
|
|
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., ... & Husak, G. (2015). The climate hazards infrared precipitation with stations—a new
|
|
Hakim DK, Gernowo R, and Nirwansyah AW (2024). Flood prediction with time series data mining: Systematic review. Natural Hazards Research, 4(2): 194-220. https://doi.org/10.1016/j.nhres.2023.10.001
|
|
Islam, T., Zeleke, E. B., Afroz, M., & Melesse, A. M. (2025). A Systematic Review of Urban Flood Susceptibility Mapping: Remote Sensing, Machine Learning, and Other Modeling Approaches. Remote Sensing, 17(3), 524. https://doi.org/10.3390/rs17030524
|
|
Lehner, B., Verdin, K., & Jarvis, A. (2008). HydroSHEDS. ค้นเมื่อ [19 พฤศจิกายน 2567], ค้นจาก https://www.hydrosheds.org/
|
|
Manikandan, P., Vivek, S. T. S., Thejaswi, M., Tejaswini, B., Manoj, S., & Reddy, P. T. (2024). Flood Risk Assessment System using Logistic Regression. In 2024 8th International Conference on Electronics, Communication and Aerospace Technology (ICECA) (pp. 1145-1149). IEEE. https://doi.org/10.1109/ICECA63461.2024.10801008
|
|
NASA. (n.d.). Moderate Resolution Imaging Spectroradiometer (MODIS). ค้นเมื่อ [19 พฤศจิกายน 2567], ค้นจาก https://lifehacker.ru/veb-sajt-nasa/
|
|
Nhangumbe, M., Nascetti, A., & Ban, Y. (2023). Multi-Temporal Sentinel-1 SAR and Sentinel-2 MSI Data for Flood Mapping and Damage Assessment in Mozambique. ISPRS International Journal of Geo-Information, 12(2), 53. https://doi.org/10.3390/ijgi12020053
|
|
Tengtrairat, N., Woo, W. L., Parathai, P., Sundaranaga, C., Na Ayutthaya, T. K., & Rinchumphu, D. (2022). Impact of extreme class-imbalance on landslide-risk prediction and mitigation using two-stage deep neural network. In 2022 14th International Conference on Signal Processing Systems (ICSPS) (pp. 712–719). IEEE. https://doi.org/10.1109/ICSPS58776.2022.00131
|
|
Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 1068-1072.
|
|
Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. https://doi.org/10.1038/nature20584
|
|
Pham, H. V., Brakenridge, G. R., Anderson, E., & Kettner, A. J. (2021). Satellite-based flood detection and monitoring using multi-temporal Sentinel-1 SAR imagery. Remote Sensing, 13(3), 453. https://doi.org/10.3390/rs13030453
|
|
Sanderson, J., Tengtrairat, N., Woo, W. L., Mao, H., & Al-Nima, R. R. (2023). XFIMNet: an Explainable deep learning architecture for versatile flood inundation mapping with synthetic aperture radar and multi-spectral optical images. International Journal of Remote Sensing, 44(24), 7755–7789. https://doi.org/10.1080/01431161.2023.2288945
|
|
Sanderson, J., Mao, H., Tengtrairat, N., Al-Nima, R. R. O., & Woo, W. L. (2024). Explainable deep semantic segmentation for flood inundation mapping with class activation mapping techniques. Proceedings of the 15th International Conference on Agents and Artificial Intelligence (ICAART) (Vol. 3, pp. 1028–1035).
|
|
Singh, G., & Rawat, K. S. (2024). Mapping flooded areas utilizing Google Earth Engine and open SAR data: A comprehensive approach for disaster response. Discov Geosci, 2(5). https://doi.org/10.1007/s44288-024-00006-4
|
|
UN-SPIDER. (n.d.). Step 10: Area calculation of flood extent. จาก [19 พฤษจิกายน 2567] https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-google-earth-engine-flood-mapping/step-by-step#Step%2010:%20Area%20calculation%20of%20flood%20extent
|
|
Yang, X., Wang, N., Liang, Q., Chen, A., & Wu, Y. (2021). Impacts of Human Activities on the Variations in Terrestrial Water Storage of the Aral Sea Basin. Remote Sensing, 13(15), 2923. https://doi.org/10.3390/rs13152923.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Return to search menu
|
|
|