Maejo Information Technology and Innovation Journal (MITIJ)
 Search | First Page   
 
 
 
» Home
» Current Issue
» Archives
» Journal Search/Article
» Register (OJS/PKP)
 

                               :: Article details ::
Return to search menu 
Article name
Auto-marking of Celestial Target System based on Image-based Astrometry Engineering
Article type
Research article
Authors Chanannaphat Kosithirantrakul(1), Rungrit Anutarawiramkul(3), Payungsak Kasemsumran(1), Paween Khoenkaw(1), Somchai Arayapitaya(2) and Panuwat Mekha(1*)
Office Department of Computer Science, Faculty of Science, Maejo University, 50290 Thailand(1), Technology Digital Division, Office of University, Maejo University, 50290 Thailand(2), Observatory Laboratory, National Astronomical Research Institute of Thailand (Public Organization), 50180, Thailand(3) *Corresponding author: panuwat_m@mju.ac.th
Journal name Vol. 11 No.2 (2025): May - August
Abstract

    The process of celestial object positioning is complex and time-consuming. Astronomers must choose objects of interest (asteroids or comets) and calculate precise orbital elements including eccentricity, inclination, longitude of ascending node, argument of perihelion, semi-major axis, and mean anomaly. These parameters are converted into right ascension and declination coordinates to determine exact positions, then recorded in FITS files. To streamline this process, a web application for automatic celestial object positioning has been developed. Users can upload FITS files to identify celestial objects,  with the system generating annotated images showing object positions and relevant details. The system allows for easy downloading of FITS files and JPEG images for further analysis. Notably, it achieves an error rate below 0.0001% when compared to JPL Horizons, NASA's solar system data service.

Keywords Celestial Object; 6 Orbital Elements; FITS file; Horizons
Page number 250-275
ISSN ISSN 3027-7280 (Online)
DOI
ORCID_ID 0009-0003-0971-3090
Article file https://mitij.mju.ac.th/ARTICLE/R68019G.pdf
  
Reference 
  Bendjoya, P. R., Cellino, A., Froeschl?, C., & Zappal?, V. (1993). Asteroid dynamical families: a reliability test for two identification methods. Astronomy and Astrophysics, 272, 651-670.
  Brown, H. L., & Zhao, W. (2019). Web-based astronomy tools using Gaia DR3 data. Journal of Astronomical Software Development, 7(4), 112-125.
  Carruba, V., Aljbaae, S., & Lucchini, A. (2019). Machine-learning identification of asteroid groups. Monthly Notices of the Royal Astronomical Society, 488(1), 1377-1386.
  Domingos, R. C., Huaman, M., & Louren?o, M. V. F. (2025). Identification of asteroid families' members. Machine Learning for Small Bodies in the Solar System, 33-57.
  Jo, J. H., Park, I. K., Choe, N. M., & Choi, M. S. (2011). The Comparison of the Classical Keplerian Orbit Elements, Non-Singular Orbital Elements (Equinoctial Elements), and the Cartesian State Variables in Lagrange Planetary Equations with J? Perturbation: Part I. Journal of Astronomy and Space Sciences, 28(1), 37-54.
  Jones, M. R., & Patel, S. A. (2020). Deep learning applications in astronomical object classification: A case study with SDSS data. Monthly Notices of the Royal Astronomical Society, 498(2), 567-580.
  Kovalevsky, J., & Seidelmann, P. K. (2011). Fundamentals of astrometry. Cambridge University Press.
  Kruk, S., Mart?n, P. G., Popescu, M., Mer?n, B., Mahlke, M., Carry, B., ... & Laureijs, R. (2022). Hubble Asteroid Hunter-I. Identifying asteroid trails in Hubble Space Telescope images. Astronomy & Astrophysics, 661, A85.
  Mekha, P., & Osathanunkul, K. (2020, March). Web application for sick animals health monitoring system. In 2020 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON) (pp. 123-127). IEEE.
  Smith, J. D., & Lee, K. T. (2021). Astrometric calibration methods for high-precision celestial object positioning. Astrophysical Journal, 892(1), 23-34.
  Neuh?user, D. L., Neuh?user, R., Mugrauer, M., Harrak, A., & Chapman, J. (2021). Orbit determination just from historical observations? Test case: The comet of AD 760 is identified as 1P/Halley. Icarus, 364, 114278.
  Oesterwinter, C., & Cohen, C. J. (1972). New orbital elements for Moon and planets. Celestial Mechanics, 5(3), 317-395.
  Rhodes, B. C. (2011). PyEphem: astronomical ephemeris for Python. Astrophysics SourceCode Library, ascl-1112.
  Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T., ... & Streicher, O. (2013). Astropy: A community Python package for astronomy. Astronomy & Astrophysics, 558, A33.
  Solontoi, M., Ivezi?, ?., West, A. A., Claire, M., Juri?, M., Becker, A., ... & Loomis, C. (2010). Detecting active comets in the SDSS. Icarus, 205(2), 605-618.
 
 
 
 
 
 
 
 
 
 
 
 
Return to search menu
       
Editorial Board of Maejo Information Technology and Innovation Journal MAEJO UNIVERSITY
No. 63 Moo 4, Nong Han Subdistrict, San Sai District, Chiang Mai Province 50290  mitij@mju.ac.th