Article name |
Weather Classification System using Deep Learning Technology for National Astronomical Research Institute of Thailand SkyCamera
|
|
|
Article type |
Research article
|
Authors |
Kanitnan Thongsakul(1), Krisada Palee(3), Payungsak Kasemsumran(1), Paween Khoenkaw(1), Somchai Arayapitaya(2) and Panuwat Mekha(1*)
|
Office |
Department of Computer Science, Faculty of Science, Maejo University, Chiangmai, Thailand, 50290(1), Technology Digital Division, Office of University, Maejo University, 50290 Thailand(2), Observatory Laboratory, National Astronomical Research Institute of Thailand (Public Organization), 50180, Thailand(3)) *Corresponding author: panuwat_m@mju.ac.th
|
Journal name |
Vol. 11 No.2 (2025): May -
August
|
Abstract |
The Weather Classification System Using Deep Learning Technology for Sky Cameras of the National Astronomical Research Institute (Public Organization) The objective is to use continuous sky photo data stored in a database to train and develop an artificial intelligence system for weather classification. This aims to increase the accuracy in displaying sky statuses, including clear sky, cloudy, overcast, and rainy conditions. By using deep learning algorithms, the system achieves an accuracy rate of 96.67% through image classification with convolutional neural networks. These networks are based on artificial neural networks that can effectively learn and analyze complex data. The system can process and classify sky conditions in real-time based on specified locations and times. Additionally, it can store data to display through graphs, allowing users to know the sky conditions at different times. The system also provides the capability to retrieve historical data by date, time, and location as needed by the users. This is highly beneficial for studying and analyzing weather conditions and astronomical phenomena.
|
Keywords |
Sky image; SkyCamera; Weather Classification; Deep Learning
|
Page number |
289-308
|
ISSN |
ISSN 3027-7280 (Online)
|
DOI |
|
ORCID_ID |
0009-0003-0971-3090
|
Article file |
https://mitij.mju.ac.th/ARTICLE/R68019I.pdf
|
| |
Reference | |
|
ภานุวัฒน์ เมฆะ, พฤติพงศ์ มุสิกอง, ณัฐภาส ผลากอง, พาสน์ ปราโมกข์ชน และ พยุงศักดิ์ เกษม
สำราญ. (2566). การเปรียบเทียบประสิทธิภาพของโมเดลจำแนกภาพสำหรับโรคใบ ข้าวโพด. วารสารแม่โจ้เทคโนโลยีสารสนเทศและนวัตกรรม, 9(2), 1-16.
|
|
ภานุวัฒน์ เมฆะ, ณัฐณิชา ตียะสุขเศรษฐ์, คึกฤทธิ์ โอสถานนต์กุล (2567). การเปรียบเทียบ
ประสิทธิภาพด้วยเครือข่ายประสาทเทียมจากการกำหนดค่าการเรียนรู้แบบต่าง ๆ สำหรับจำแนกภาพประเภทโรคอัลไซเมอร์ในมนุษย์. วารสารแม่โจ้เทคโนโลยีสารสนเทศและนวัตกรรม, 10(4), 1-18.
|
|
ภานุวัฒน์ เมฆะ, ณัฐณิชา ตียะสุขเศรษฐ์ (2567). การเปรียบเทียบประสิทธิภาพของอัลกอริทึม
จำแนกภาพสำหรับโรคตาในมนุษย์. วารสารแม่โจ้เทคโนโลยีสารสนเทศและนวัตกรรม, 10(3), 1-16.
|
|
Chen, J. (2019). Deep learning for handwritten digits recognition using MATLAB
toolbox [Master's thesis, University of Victoria]. UVicSpace. http://hdl.handle.net/1828/11353
|
|
Ichim, L., & Popescu, D. (2017). Retinal image segmentation based on weighted
local detectors and confusion matrix. IEEE Transactions on Signal Processing, 65(15), 4053-4064.
https://doi.org/10.1109/TSP.2017.8076068
|
|
Hugo, Vega-Huerta., Kevin, Renzo, Pantoja-Pimentel., Sebastian, Yimmy, Quintanilla
Jaimes., Gisella, Luisa, Elena, Maquen-Ni?o., Percy, De-La-Cruz-VdV., Luis, Guerra-Grados. (2024). Classification of Alzheimer’s Disease Based on Deep Learning Using Medical Images. International Journal of Online Engineering (ijoe), doi: 10.3991/ijoe.v20i10.49089
|
|
L. -W. Kang, K. -L. Chou and R. -H. Fu, Deep Learning-Based Weather Image
Recognition. 2018 International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, 2018, pp. 384-387,
doi: 10.1109/IS3C.2018.00103.
|
|
MathWorks. (n.d.). Deep Learning Toolbox. MathWorks. ค้นจาก
https://ch.mathworks.com/products/deep-learning.html
|
|
MathWorks. (n.d.). Train Deep Learning Model in MATLAB. MathWorks. ค้นจาก
https://ch.mathworks.com/help/deeplearning/ug/training-deep-learning-models-in-matlab.html
|
|
P. Mekha and N. Teeyasuksaet, Image Classification of Rice Leaf Diseases Using
Random Forest Algorithm. 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering, Cha-am, Thailand, 2021, pp. 165-169, doi: 10.1109/ECTIDAMTNCON51128.2021.9425696.
|
|
Mekha, P., & Teeyasuksaet, N. (2019, January). Deep learning algorithms for
predicting breast cancer based on tumor cells. In 2019 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTIDAMT-NCON) (pp. 343-346). IEEE.
|
|
Mekha, P., Teeyasuksaet, N., Sompowloy, T., & Osathanunkul, K. (2022). Honey bee
sound classification using spectrogram image features. In 2022 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON) (pp. 205–209). IEEE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|