Maejo Information Technology and Innovation Journal (MITIJ)
 Search | First Page   
 
 
 
» Home
» Current Issue
» Archives
» Journal Search/Article
» Register (OJS/PKP)
 

                               :: Article details ::
Return to search menu 
Article name
Development Of A Model For Screening Patients With Dementia In The Early Stages with Machine Learning Techniques
Article type
Research article
Authors Lersak Phothong(1), Chutimon Jampee(1), Phenphitcha Chantho(1) and Prapaporn Chubsuwan(1*)
Office Department of Business Computer, Mahasarakham Business School, Mahasarakham University(1) *Corresponding author: prapaporn.c@mbs.msu.ac.th
Journal name Vol. 11 No.3 (2025): September - December
Abstract

        Accurate early detection of dementia is crucial for effective management. This study aims to develop and compare the performance of three machine learning models: Random Forest (RF), Logistic Regression (LR), and Support Vector Machine (SVM) for screening brain conditions. Using a dataset of 1,842 samples, including dementia data and 18 health factors, the data was analyzed, and models were developed according to the standard CRISP-DM data mining processes. Performance was assessed using accuracy, F-measure, sensitivity, and specificity. The results showed that LR had the highest accuracy (94.03%), followed by RF (93.60%) and SVM (92.56%). LR also demonstrated superior F-measure (96.76%), sensitivity (99.51%), and specificity (47.63%). This study indicates the potential of LR in dementia screening, outperforming RF and SVM in terms of accuracy, efficiency, and balanced classification. These findings support the development of machine learning-based tools to aid clinical decision-making in dementia diagnosis and effective treatment planning.

Keywords Dementia; Machine Learning; Logistic Regression; Classification Performance; Dementia Screening
Page number 1-18
ISSN ISSN 3027-7280 (Online)
DOI
ORCID_ID 0009-0006-7104-9831
Article file https://mitij.mju.ac.th/ARTICLE/R68020.pdf
  
Reference 
  อนุพงศ์ สุขประเสริฐ. (2024). คู่มือการทำเหมืองข้อมูล โปรแกรม RAPIDMINER STUDIO. พิมพ์ครั้งที่ 5. มหาสารคาม : สาขาคอมพิวเตอร์ธุรกิจ คณะการบัญชีและการจัดการ มหาวิทยาลัยมหาสารคาม.
  Ambrish, G., Ganesh, B., Ganesh, A., Srinivas, C., & Mensinkal, K. (2022). Logistic regression technique for prediction of cardiovascular disease. Global Transitions Proceedings, 3(1), 127-130. https://doi.org/10.1016/j.gltp.2022.04.008
  An, Q., Rahman, S., Zhou, J., & Kang, J. J. (2023). A comprehensive review on machine learning in healthcare industry: classification, restrictions, opportunities and challenges. Sensors, 23(9), 4178. doi: 10.3390/s23094178
  Austin, A. M., Ramkumar, N., Gladders, B., Barnes, J. A., Eid, M. A., Moore, K. O., ... & Goodney, P. P. (2022). Using a cohort study of diabetes and peripheral artery disease to compare logistic regression and machine learning via random forest modeling. BMC Medical Research Methodology, 22(1), 300. doi: 10.1186/s12874-022-01774-8
  Chelladurai, U., & Pandian, S. (2021). Machine Learning based Early Prediction of Disease with Risk Factors Data of the Patient Using Support Vector Machines. In Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication: Proceedings of MDCWC 2020 (pp. 519-534). Springer Singapore. https://www.doi.org/10.1007/978-981-16-0289-4_38
  Chrobak, D., Ko?odzieczak, M., Kozlovska, P., Krzemi?ska, A., & Miller, T. (2023). Leveraging random forest techniques for enhanced microbiological analysis: a machine learning approach to investigating microbial communities and their interactions. Scientific Collection ?InterConf+?, (32 (151)), 386-398.
  Dening, K. H. (2023). Dementia: recognition and cognitive testing in community and primary care settings. British Journal of Community Nursing, 28(7), 332-336. https://doi.org/10.12968/bjcn.2023.28.7.332
  Dom?nguez-Rodr?guez, S., Serna-Pascual, M., Oletto, A., Barnabas, S., Zuidewind, P., Dobbels, E., ... & EPIICAL Consortium. (2022). Machine learning outperformed logistic regression classification even with limit sample size: A model to predict pediatric HIV mortality and clinical progression to AIDS. Plos one, 17(10), e0276116. doi: 10.1371/journal.pone.0276116
  Hinton, L., Wang, K., Levkoff, S. E., Chuengsatiansup, K., Sihapark, S., Gallagher-Thompson, D., & Chen, H. (2022). Dementia neuropsychiatric prevalence, severity, and correlates in community-dwelling Thai older adults. Alzheimer's & Dementia, 18, https://doi.org/10.1002/alz.066876
  Hurtado, R., Matute, J., & Boni, J. (2022). An analysis model for Machine Learning using Support Vector Machine for the prediction of Diabetic Retinopathy. Artificial Intelligence and Social Computing, 28(28). http://doi.org/10.54941/ahfe1001450
  James, C., Ranson, J. M., Everson, R., & Llewellyn, D. J. (2021). Performance of machine learning algorithms for predicting progression to dementia in memory clinic patients. JAMA network open, 4(12), e2136553-e2136553. doi:10.1001/jamanetworkopen.2021.36553
  Kumari, S., Bagri, K., & Deshmukh, R. (2023). Dementia: A journey from cause to cure. In Nanomedicine-Based Approaches for the Treatment of Dementia (pp. 37-56). Academic Press. https://doi.org/10.1016/B978-0-12-824331-2.00011-X
  Langenberger, B., Schulte, T., & Groene, O. (2023). The application of machine learning to predict high-cost patients: A performance-comparison of different models using healthcare claims data. PloS one, 18(1), e0279540. doi: 10.1371/journal.pone.0279540
  Lumbanraja, F. R., Lufiana, F., Heningtyas, Y., & Muludi, K. (2022). Implementasi Support Vector Machine (SVM) untuk Klasifikasi Pederita Diabetes Mellitus. Jurnal Komputasi, 10(1), 75-83. http://repository.lppm.unila.ac.id/id/eprint/46370
  Mehrparvar, F., (2024) Dementia prediction. Kaggle. https://www.kaggle.com/datasets/fatemehmehrparvar/dementia
  Panyawattanakit, C., Wongpradit, W., Kanhasing, R., & Kulalert, P. (2022). Cognitive impairment and associated factors among older adults with diabetes in a suburban primary health center in Thailand. Dementia and Geriatric Cognitive Disorders, 51(2), 175-181. https://doi.org/10.1159/000524132
  Prayogo, R., Anggraeni, D., & Hadi, A. F. (2022). Classification of Cardiovascular Disease Gene Data Using Discriminant Analysis and Support Vector Machine (SVM). BERKALA SAINSTEK, 10(3), 124-132. https://doi.org/10.19184/bst.v10i3.22259
  Rogerson, C., & Hall, M. (2023). Methodological progress note: Machine learning methods in healthcare research. Journal of Hospital Medicine, 18(5), 431-434. doi: 10.1002/jhm.13078
  Ruby, A. U., Chandran, J. G. C., Jain, T. S., Chaithanya, B. N., & Patil, R. (2023). RFFE–Random Forest Fuzzy Entropy for the classification of Diabetes Mellitus. AIMS Public Health, 10(2), 422. https://doi.org/10.3934%2Fpublichealth.2023030
  Sayed, A. H. (2022). Logistic Regression. In Inference and Learning from Data: Learning (pp. 2457–2498). chapter, Cambridge: Cambridge University Press.
  Senanarong, V., Rattanabannakit, C., Hunnangkul, S., Wongkom, N., Likitjaroen, Y., Witoonpanich, P., & Phanthumchinda, K. (2023). Five year dementia registry in Thailand: Regional distribution, etiologies, and outcome of dementia. Alzheimer's & Dementia, 19. https://doi.org/10.1002/alz.061560
  Starbuck, C. M. (2023) Logistic Regression. In: The Fundamentals of People Analytics. Springer, Cham. https://doi.org/10.1007/978-3-031-28674-2_12
  Teja, P. P. S., & Veeramani, T. (2022). Supervised study of Novel Random Forest Algorithm for prediction of heart disease in Comparison with The Decision Tree Algorithm. Cardiometry, (25), 1483-1490. DOI:10.18137/cardiometry.2022.25.14831490
  Wang, K., Hinton, L., Levkoff, S., Sihapark, S., Chuengsatiansup, K., & Chen, H. (2022). PSYCHOMETRIC PROPERTIES OF THE NEUROPSYCHIATRIC INVENTORY QUESTIONNAIRE FOR THAI OLDER ADULTS WITH DEMENTIA. Innovation in Aging, 6(Supplement_1), 383-383. https://doi.org/10.1093/geroni/igac059.1511
  Werner, P. (2023). Like beauty and contact lenses, the meaning of dementia behavioral changes is in the eyes of the beholder. International Psychogeriatrics, 35(2), 59–61. doi:10.1017/S104161022200120X
 
 
Return to search menu
       
Editorial Board of Maejo Information Technology and Innovation Journal MAEJO UNIVERSITY
No. 63 Moo 4, Nong Han Subdistrict, San Sai District, Chiang Mai Province 50290  mitij@mju.ac.th