|
|
Article name |
Development Of A Model For Screening Patients With Dementia In The Early Stages with Machine Learning Techniques
|
|
|
Article type |
Research article
|
Authors |
Lersak Phothong(1), Chutimon Jampee(1), Phenphitcha Chantho(1) and Prapaporn Chubsuwan(1*)
|
Office |
Department of Business Computer, Mahasarakham Business School, Mahasarakham University(1) *Corresponding author: prapaporn.c@mbs.msu.ac.th
|
Journal name |
Vol. 11 No.3 (2025): September -
December
|
Abstract |
Accurate early detection of dementia is crucial for effective management. This study aims to develop and compare the performance of three machine learning models: Random Forest (RF), Logistic Regression (LR), and Support Vector Machine (SVM) for screening brain conditions. Using a dataset of 1,842 samples, including dementia data and 18 health factors, the data was analyzed, and models were developed according to the standard CRISP-DM data mining processes. Performance was assessed using accuracy, F-measure, sensitivity, and specificity. The results showed that LR had the highest accuracy (94.03%), followed by RF (93.60%) and SVM (92.56%). LR also demonstrated superior F-measure (96.76%), sensitivity (99.51%), and specificity (47.63%). This study indicates the potential of LR in dementia screening, outperforming RF and SVM in terms of accuracy, efficiency, and balanced classification. These findings support the development of machine learning-based tools to aid clinical decision-making in dementia diagnosis and effective treatment planning.
|
Keywords |
Dementia; Machine Learning; Logistic Regression; Classification Performance; Dementia Screening
|
Page number |
1-18
|
ISSN |
ISSN 3027-7280 (Online)
|
DOI |
|
ORCID_ID |
0009-0006-7104-9831
|
Article file |
https://mitij.mju.ac.th/ARTICLE/R68020.pdf
|
| |
Reference | |
|
อนุพงศ์ สุขประเสริฐ. (2024). คู่มือการทำเหมืองข้อมูล โปรแกรม RAPIDMINER STUDIO. พิมพ์ครั้งที่ 5. มหาสารคาม : สาขาคอมพิวเตอร์ธุรกิจ คณะการบัญชีและการจัดการ มหาวิทยาลัยมหาสารคาม.
|
|
Ambrish, G., Ganesh, B., Ganesh, A., Srinivas, C., & Mensinkal, K. (2022). Logistic regression technique for prediction of cardiovascular disease. Global Transitions Proceedings, 3(1), 127-130. https://doi.org/10.1016/j.gltp.2022.04.008
|
|
An, Q., Rahman, S., Zhou, J., & Kang, J. J. (2023). A comprehensive review on machine learning in healthcare industry: classification, restrictions, opportunities and challenges. Sensors, 23(9), 4178. doi: 10.3390/s23094178
|
|
Austin, A. M., Ramkumar, N., Gladders, B., Barnes, J. A., Eid, M. A., Moore, K. O., ... & Goodney, P. P. (2022). Using a cohort study of diabetes and peripheral artery disease to compare logistic regression and machine learning via random forest modeling. BMC Medical Research Methodology, 22(1), 300. doi: 10.1186/s12874-022-01774-8
|
|
Chelladurai, U., & Pandian, S. (2021). Machine Learning based Early Prediction of Disease with Risk Factors Data of the Patient Using Support Vector Machines. In Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication: Proceedings of MDCWC 2020 (pp. 519-534). Springer Singapore. https://www.doi.org/10.1007/978-981-16-0289-4_38
|
|
Chrobak, D., Ko?odzieczak, M., Kozlovska, P., Krzemi?ska, A., & Miller, T. (2023). Leveraging random forest techniques for enhanced microbiological analysis: a machine learning approach to investigating microbial communities and their interactions. Scientific Collection ?InterConf+?, (32 (151)), 386-398.
|
|
Dening, K. H. (2023). Dementia: recognition and cognitive testing in community and primary care settings. British Journal of Community Nursing, 28(7), 332-336. https://doi.org/10.12968/bjcn.2023.28.7.332
|
|
Dom?nguez-Rodr?guez, S., Serna-Pascual, M., Oletto, A., Barnabas, S., Zuidewind, P., Dobbels, E., ... & EPIICAL Consortium. (2022). Machine learning outperformed logistic regression classification even with limit sample size: A model to predict pediatric HIV mortality and clinical progression to AIDS. Plos one, 17(10), e0276116. doi: 10.1371/journal.pone.0276116
|
|
Hinton, L., Wang, K., Levkoff, S. E., Chuengsatiansup, K., Sihapark, S., Gallagher-Thompson, D., & Chen, H. (2022). Dementia neuropsychiatric prevalence, severity, and correlates in community-dwelling Thai older adults. Alzheimer's & Dementia, 18, https://doi.org/10.1002/alz.066876
|
|
Hurtado, R., Matute, J., & Boni, J. (2022). An analysis model for Machine Learning using Support Vector Machine for the prediction of Diabetic Retinopathy. Artificial Intelligence and Social Computing, 28(28). http://doi.org/10.54941/ahfe1001450
|
|
James, C., Ranson, J. M., Everson, R., & Llewellyn, D. J. (2021). Performance of machine learning algorithms for predicting progression to dementia in memory clinic patients. JAMA network open, 4(12), e2136553-e2136553. doi:10.1001/jamanetworkopen.2021.36553
|
|
Kumari, S., Bagri, K., & Deshmukh, R. (2023). Dementia: A journey from cause to cure. In Nanomedicine-Based Approaches for the Treatment of Dementia (pp. 37-56). Academic Press. https://doi.org/10.1016/B978-0-12-824331-2.00011-X
|
|
Langenberger, B., Schulte, T., & Groene, O. (2023). The application of machine learning to predict high-cost patients: A performance-comparison of different models using healthcare claims data. PloS one, 18(1), e0279540. doi: 10.1371/journal.pone.0279540
|
|
Lumbanraja, F. R., Lufiana, F., Heningtyas, Y., & Muludi, K. (2022). Implementasi Support Vector Machine (SVM) untuk Klasifikasi Pederita Diabetes Mellitus. Jurnal Komputasi, 10(1), 75-83. http://repository.lppm.unila.ac.id/id/eprint/46370
|
|
Mehrparvar, F., (2024) Dementia prediction. Kaggle. https://www.kaggle.com/datasets/fatemehmehrparvar/dementia
|
|
Panyawattanakit, C., Wongpradit, W., Kanhasing, R., & Kulalert, P. (2022). Cognitive impairment and associated factors among older adults with diabetes in a suburban primary health center in Thailand. Dementia and Geriatric Cognitive Disorders, 51(2), 175-181. https://doi.org/10.1159/000524132
|
|
Prayogo, R., Anggraeni, D., & Hadi, A. F. (2022). Classification of Cardiovascular Disease Gene Data Using Discriminant Analysis and Support Vector Machine (SVM). BERKALA SAINSTEK, 10(3), 124-132. https://doi.org/10.19184/bst.v10i3.22259
|
|
Rogerson, C., & Hall, M. (2023). Methodological progress note: Machine learning methods in healthcare research. Journal of Hospital Medicine, 18(5), 431-434. doi: 10.1002/jhm.13078
|
|
Ruby, A. U., Chandran, J. G. C., Jain, T. S., Chaithanya, B. N., & Patil, R. (2023). RFFE–Random Forest Fuzzy Entropy for the classification of Diabetes Mellitus. AIMS Public Health, 10(2), 422. https://doi.org/10.3934%2Fpublichealth.2023030
|
|
Sayed, A. H. (2022). Logistic Regression. In Inference and Learning from Data: Learning (pp. 2457–2498). chapter, Cambridge: Cambridge University Press.
|
|
Senanarong, V., Rattanabannakit, C., Hunnangkul, S., Wongkom, N., Likitjaroen, Y., Witoonpanich, P., & Phanthumchinda, K. (2023). Five year dementia registry in Thailand: Regional distribution, etiologies, and outcome of dementia. Alzheimer's & Dementia, 19. https://doi.org/10.1002/alz.061560
|
|
Starbuck, C. M. (2023) Logistic Regression. In: The Fundamentals of People Analytics. Springer, Cham. https://doi.org/10.1007/978-3-031-28674-2_12
|
|
Teja, P. P. S., & Veeramani, T. (2022). Supervised study of Novel Random Forest Algorithm for prediction of heart disease in Comparison with The Decision Tree Algorithm. Cardiometry, (25), 1483-1490. DOI:10.18137/cardiometry.2022.25.14831490
|
|
Wang, K., Hinton, L., Levkoff, S., Sihapark, S., Chuengsatiansup, K., & Chen, H. (2022). PSYCHOMETRIC PROPERTIES OF THE NEUROPSYCHIATRIC INVENTORY QUESTIONNAIRE FOR THAI OLDER ADULTS WITH DEMENTIA. Innovation in Aging, 6(Supplement_1), 383-383. https://doi.org/10.1093/geroni/igac059.1511
|
|
Werner, P. (2023). Like beauty and contact lenses, the meaning of dementia behavioral changes is in the eyes of the beholder. International Psychogeriatrics, 35(2), 59–61. doi:10.1017/S104161022200120X
|
|
|
|
|
|
Return to search menu
|
|
|