Maejo Information Technology and Innovation Journal (MITIJ)
 Search | First Page   
 
 
 
» Home
» Current Issue
» Archives
» Journal Search/Article
» Register (OJS/PKP)
 

                               :: Article details ::
Return to search menu 
Article name
The Thai Classical Music Pitch Recognition Algorithm Based on The Polynomial regression Method
Article type
Research article
Authors Teerawut Hongfon(1), Part Pramokchon(1), Kittikorn Hantrakul(1) and Paween Khoenkaw(1*)
Office Department of Digital Technology Innovation, Faculty of Science, Maejo University (1) *Corresponding author: paween_k@mju.ac.th
Journal name Vol. 11 No.3 (2025): September - December
Abstract

      Thai Classical Music has its own standards for pitch frequency and frequency range that differ from Western music. Therefore, applying Western note identification algorithms to Thai Classical Music results in inaccurate note identification, especially when used for creating musical signatures for retrieval or similarity comparison. Furthermore, the pitch frequencies of Thai Classical Music vary across different standards. This research proposes a new algorithm for identifying notes in Thai Classical Music based on a regression method. Using a dataset compiled from textbooks and musical pieces from various sources, the researchers derived an equation to identify the pitch frequencies of Thai musical notes. This equation was then used to generate a new frequency table, referencing the sequence of notes on a piano. The signature creation process for retrieval begins by segmenting the audio data into smaller parts, then applying the Fast Fourier Transform (FFT) to convert each segment into frequency data. The peak frequency is extracted from the one-sideband frequency data is analyzed to identify peak frequencies, which are then matched with a proposed frequency table to determine the corresponding musical notes. These notes are then concatenated into a character string, forming the signature of the piece. Experimental results from developing a music retrieval system show that the proposed method outperforms the traditional Western-based method, achieving an accuracy of 72.53 percent.

Keywords Thai Classical Music; Fast Fourier Transform; Regression Method
Page number 167-182
ISSN ISSN 3027-7280 (Online)
DOI
ORCID_ID 0000-0002-4687-2256
Article file https://mitij.mju.ac.th/ARTICLE/R68028.pdf
  
Reference 
  จุฬาลงกรณ์มหาวิทยาลัย. (2542). การศึกษาค้นคว้าวิจัยเรื่อง ความถี่ของเสียงดนตรีไทย โดยพระราชดำริในพระบาทสมเด็จพระเจ้าอยู่หัว. กรุงเทพฯ: โรงพิมพ์เรือนแก้วการพิมพ์.
  ณัชชา พันธุ์เจริญ. (2556). ทฤษฎีดนตรี(พิมพ์ครั้งที่ 12). กรุงเทพฯ : สำนักพิมพ์เกศกะรัต.
  ธนะรัชต์ อนุกูล. 2563. ระบบเสียงดนตรีไทยกับการขับร้องเพลงไทยเดิม. วารสารทีทัศน์วัฒนธรรม.19(1). 195-214.
  สงบศึก ธรรมวิหาร. (2567). ดุริยางค์ไทย(พิมพ์ครั้งที่ 4). กรุงเทพฯ : สำนักพิมพ์จุฬาลงกรณ์มหาวิทยาลัย.
  สราวุฒิ สุจิตจร. (2546). การวิเคราะห์เสียงดนตรีไทย. นครราชสีมา : โรงพิมพ์เลิศศิลป์ (1994).
  สุกรี เจริญสุข. (2546). เสียงและระบบดนตรีไทย. กรุงเทพฯ : วิทยาลัยดุริยางศิลป์มหาวิทยาลัยมหิดล.
  อุทิศ นาคสวัสดิ์. (2531). ทฤษฎีและปฏิบัติดนตรีไทย ภาค ๑ ว่าด้วยหลักและทฤษฎีดนตรีไทย. กรุงเทพฯ : สถาบันฝึกดนตรีและนาฏศิลป์ไทย.
  Asif Ghias, Jonathan Logan, David Chamberlin & Brian C Smith. (1995). Query by humming: Musical information retrieval in an audio database. In Proceedings of the third ACM international conference on Multimedia. pp.231–236.
  Boonmatham, Pheerasut & Pongpinigpinyo, Sunee & Soonklang, Tasanawan. (2013). Musical-scale characteristics for Thai Classical Music genre classification. 2013 International Computer Science and Engineering Conference, ICSEC 2013. pp 227-232. 10.1109/ICSEC.2013.6694784.
  Boonmatham, Pheerasut & Pongpinigpinyo, S. & Soonklang, Tasanawan. (2012). A comparison of audio features of Thai Classical Music Instrument. pp 213-218.
  International Organization for Standardization. (1975). ISO 16:1975 Acoustics — Standard tuning frequency (Standard musical pitch). Switzerland.
  Uitdenbogerd, Alexandra & Zobel, Justin. (1999). Matching Techniques for Large Music Databases. ACM MULTIMEDIA '99: Proceedings of the seventh ACM international conference on Multimedia (Part 1). 1(978-1-58113-151-2): 57-66.
  P. Khoenkaw & P. Piamsa-nga. (2014). Video Similarity Measurement Using Spectrogram, in Proceeding of 2014 International Computer Science and Engineering Conference (ICSEC 2014), pp 412-417, 2014, Khon Kaen, THAILAND. DOI:10.1109/ICSEC.2014.6978241.
  P. Khoenkaw & P. Piamsa-nga. (2014). N-Gram Signature for Video Copy Detection. in Recent Advances in Information and Communication Technology. vol. 265, S. Boonkrong, H. Unger, and P. Meesad, Eds., ed: Springer International Publishing, 2014, pp. 335-344. DOI: 10.1007/978-3-319-06538-0_33
  Phra Chen Duriyanga. (2015). THAI MUSIC (Thai Culture, New Series No.15) (7th ed.). Bangkok : Rung Silp Printing Company Limited.
  Rumsey, F., and McC.rmick, T. (2006). Sound & recording: An introduction. Boston : Elsevier/Focal Press.
  Shah, Ayush & Kattel, Manasi & Nepal, Araju & Shrestha, D.. (2019). Chroma Feature Extraction.
  Tyler Connaghan. (2023). Pentatonic Scale: The Ultimate Beginner's Guide. Available from: https://emastered.com/blog/pentatonic-scale. [22 March 2024]
  W. -j. Liu and J. -l. Feng. (2011). Qualitative mapping model of humming melody extraction. Proceedings of 2011 International Conference on Computer Science and Network Technology, Harbin, China, 2011, pp. 1650-1653. doi: 10.1109/ICCSNT.2011.6182283.
 
 
 
 
 
 
 
 
Return to search menu
       
Editorial Board of Maejo Information Technology and Innovation Journal MAEJO UNIVERSITY
No. 63 Moo 4, Nong Han Subdistrict, San Sai District, Chiang Mai Province 50290  mitij@mju.ac.th