Maejo Information Technology and Innovation Journal (MITIJ)
 Search | First Page   
 
 
 
» Home
» Current Issue
» Archives
» Journal Search/Article
» Register (OJS/PKP)
 

                               :: Article details ::
Return to search menu 
Article name
Performance Comparison of Room Price Forecasting Models for Small Hotel Business Using Data Mining Techniques
Article type
Research article
Authors Pornpinit Wiratsakulchai(1) and Pongkorn Chantaraj(1*)
Office Department of Data Science and Digital Innovation, Faculty of Technology Innovation and Creativity, The Far Eastern University(1) *Corresponding author: pongkorn@feu.ac.th
Journal name Vol. 12 No.2 (2026): May - August
Abstract

          The objectives of this research are to develop, evaluate, and compare the performance of room price forecasting models for a small hotel using data mining techniques to support efficient room pricing decisions. This study analyzed secondary data from a Property Management System, totaling 1,480 records, to evaluate the performance of Linear Regression and XGBoost Regressor models. The evaluation focused on key performance indicators: the Coefficient of Determination R2, indicating the proportion of variance explained by the model, and the Mean Absolute Error (MAE), representing the average magnitude of prediction error in Baht. The results showed that the Linear Regression model achieved an R2 of 0.7608 and an MAE of 1,162.27 Baht, whereas the XGBoost Regressor yielded 0.7256 and 1,112.79 Baht, respectively. Although Linear Regression exhibited a higher R2, indicating a better capability to explain data variance, the XGBoost Regressor provided a lower Mean Absolute Error (MAE). In the context of pricing, minimizing the monetary margin of error is considered a more critical criterion. Consequently, this study concludes that the XGBoost Regressor is more suitable for effectively supporting dynamic pricing strategies.

Keywords Forecasting Model; Data Mining; Linear Regression; XGBoost Regressor
Page number 101-115
ISSN ISSN 3027-7280 (Online)
DOI
ORCID_ID 0009-0006-3877-0440
Article file https://mitij.mju.ac.th/ARTICLE/R69055.pdf
  
Reference 
  วรากร ลิขิตอนุภาค. (2558). แบบจำลองการพยากรณ์ราคาห้องพักเฉลี่ยต่อคืนของโรงแรมในเมืองและรีสอร์ทระดับ 3–5 ดาวในประเทศไทย สำหรับลูกค้าที่จองห้องพักผ่านตัวแทนขายแบบออนไลน์. (วิทยานิพนธ์ปริญญาดุษฎีบัณฑิต). มหาวิทยาลัยธรรมศาสตร์.
  Alotaibi, E. (2020). Application of machine learning in the hotel industry: A critical review. Journal of Association of Arab Universities for Tourism and Hospitality, 18(3): 78-96.
  Castro, O., Bruneau, P., Sottet, J. S. & Torregrossa, D. (2023). Landscape of high-performance Python to develop data science and machine learning applications. ACM Computing Surveys, 56(3): 1-30.
  Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. & Wirth, R. (2000). CRISP-DM 1.0: Step-by-step data mining guide. CRISP-DM Consortium.
  Dankorpho, P. (2024). Sales forecasting for retail business using XGBoost algorithm. Journal of Computer Science and Technology Studies, 6(2): 136–141.
  Han, H., Hsu, L. T. J. & Sheu, C. (2010). Application of customer relationship management (CRM) in the hotel industry: A review of the literature. International Journal of Hospitality Management, 29(4): 575-582.
  Kimes, S. E. (2011). The future of hotel revenue management. Journal of Revenue and Pricing Management, 10(1): 65-72.
  Lieberman, W. (2005). The theory and practice of revenue management [Book review]. Journal of Revenue and Pricing Management, 4(3): 297–299.
  Ma, Q., Feng, S. & Liu, J. (2024). Dynamic pricing and demand forecasting: Integrating time-series analysis, regression models, machine learning, and competitive analysis. In Proceedings of the 2nd International Conference on Machine Learning and Automation. (pp. 149–154).
  Maulud, D. H. & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(4): 140–147.
  Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A. & Cournapeau, D. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12: 2825–2830.
  Pereira, L. N. & Cerqueira, V. (2022). Forecasting hotel demand for revenue management using machine learning regression methods. Current Issues in Tourism, 25(17): 2733–2750.
  Srianomai, S., Natshivawong, C., Klomwises, Y. & Chaikajonwat, T. (2024). Predicting prices of Airbnb accommodations in Thailand by SVM and XGBoost methods. Progress in Applied Science and Technology, 14(2): 16–23.
  Ungtrakul, P. (2018). Forecasting hotel daily occupancy for high-frequency and complex seasonality data (Master’s thesis). Faculty of Engineering, Chulalongkorn University.
 
 
 
 
 
 
 
 
 
 
 
 
 
Return to search menu
       
Editorial Board of Maejo Information Technology and Innovation Journal MAEJO UNIVERSITY
No. 63 Moo 4, Nong Han Subdistrict, San Sai District, Chiang Mai Province 50290  mitij@mju.ac.th